Formulas and properties of nth root
Definition
The nth root of the number a is a number b, n-th power is equal to a
The following properties hold for nth root (a > 0, b > 0 and n, m, k is natural numbers):
- n√a b = n√a · n√b
- $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
- $(\sqrt[n]{a})^k=\sqrt[n]{a^k}$
- $\sqrt[n]{\sqrt[m]{a}}=\sqrt[nm]{a}$
- $\sqrt[nk]{a^k}=\sqrt[n]{a}$
- $\sqrt[n·k]{a^{m·k}}=(\sqrt[n]{a^m})$
$\sqrt[n]{a^n}=$ |a| if n – even a if n – odd - For any a and b, such that 0 ≤ a ≤ b truly following inequality:
n√ a ≤ n√ b
Factoring: Some special cases
Formulas and properties of exponents
Formulas and properties of nth root
Formulas and properties of logarithms
Formulas and properties of arithmetic sequence
Formulas and properties of geometrical sequence
Trigonometry formulasDerivative formulas
Integrals table
Add the comment