OnlineMSchool
Study of mathematics online.
Study math with us and make sure that "Mathematics is easy!"

Sum of cubes

Definition.
Sum of cubes of two expressions can be found using the following formula:

a3 + b3 = (a + b)·(a2 - ab + b2)


Derivation of the formula of sum of cubes

The proof of the formula is very simple. To prove the formula is sufficient to multiply the expression:

(a + b)·(a2 - ab + b2) =

= a3 - a2b + ab2 + ba2 - ab2 + b3 = a3 + b3

Applying of sum of cubes formula

Sum of cubes formula convenient to use:
  • to factorised
  • to simplify expressions

Examples of task

Example 1.
Factorised x3 + 27.

Solution: Apply the sum of cubes formula.

x3 + 27 = x3 + 33 = (x + 3)·(x2 - 3x + 9)
Example 2.
Factorised 8x3 + 27y6.

Solution: Apply the sum of cubes formula.

8x3 + 27y6 = (2x)3 + (3y2)3 =

= (2x + 3y2)·(4x2 - 6xy2 + 9y4)
Example 3.
Simplify the expression 27x3 + 13x + 1.

Solution: Apply the sum of cubes formula in numerator.

27x3 + 13x + 1 = (3x + 1)·(9x2 - 3x +1)3x + 1 = 9x2 - 3x +1

Add the comment

0
Follow OnlineMSchool on