| 1.   | 
| ∫ | 
sin (x) dx = -cos (x) + C |   
 | 
| 2.   | 
| ∫ | 
cos (x) dx = sin (x) + C |   
 | 
| 3.   | 
| ∫ | 
sin2 (x) dx = x2 - 14 sin (2x) + C |   
 | 
| 4.   | 
| ∫ | 
cos2 (x) dx = x2 + 14 sin (2x) + C |   
 | 
| 5.   | 
| ∫ | 
sinn (x) dx = -1n sinn - 1 (x) cos (x) + n - 1n | ∫ | 
sinn - 2 (x) dx |   
 | 
| 6.   | 
| ∫ | 
cosn (x) dx = 1n cosn - 1 (x) sin (x) + n - 1n | ∫ | 
cosn - 2 (x) dx |   
 | 
| 7.   | 
| ∫ | 
dxsin (x) = ln|tg(x2)| + C
 |   
 | 
| 8.   | 
| ∫ | 
dxcos (x) = ln|ctg(x2)| + C
 |   
 | 
| 9.   | 
| ∫ | 
dxsin2 (x) = -ctg (x) + C
 |   
 | 
| 10.   | 
| ∫ | 
dxcos2 (x) = tg (x) + C
 |   
 | 
| 11.   | 
| ∫ | 
sin (x) cos (x) dx = -14cos (2x) + C |   
 | 
| 12.   | 
| ∫ | 
sin2 (x) cos (x) dx = 13sin3 (x) + C |   
 | 
| 13.   | 
| ∫ | 
sin (x) cos2 (x) dx = -13cos3 (x) + C |   
 | 
| 14.   | 
| ∫ | 
sin2 (x) cos2 (x) dx = -18x - 132sin (4x) + C |   
 | 
| 15.   | 
| ∫ | 
tg (x) dx = -ln |cos (x)| + C |   
 | 
| 16.   | 
| ∫ | 
ctg (x) dx = ln |sin (x)| + C |   
 | 
| 17.   | 
| ∫ | 
sin (x)cos2 (x) dx = 1cos (x) + C
 |   
 | 
| 18.   | 
| ∫ | 
cos (x)sin2 (x) dx = -1sin (x) + C
 |   
 | 
| 19.   | 
| ∫ | 
sin2 (x)cos2 (x) dx = tg (x) - x + C
 |   
 | 
| 20.   | 
| ∫ | 
cos2 (x)sin2 (x) dx = -ctg (x) - x + C
 |   
 | 
| 21.   | 
| ∫ | 
sin2 (x)cos (x) dx = ln|ctg(x2)| - sin (x) + C
 |   
 | 
| 22.   | 
| ∫ | 
cos2 (x)sin (x) dx = ln|tg(x2)| + cos (x) + C
 |   
 | 
| 23.   | 
| ∫ | 
dxsin (x) cos (x) = ln|tg(x)| + C
 |   
 | 
| 24.   | 
| ∫ | 
dxsin2 (x) cos (x) = -1sin (x) + ln|ctg(x2)| + C
 |   
 | 
| 25.   | 
| ∫ | 
dxsin (x) cos2 (x) = 1cos (x) + ln|tg(x2)| + C
 |   
 | 
| 26.   | 
| ∫ | 
dxsin2 (x) cos2 (x) = tg(x) - ctg(x) + C
 |   
 | 
| 27.   | 
| ∫ | 
dxsinn (x) = -1n - 1cos (x)sinn - 1 (x) + n - 2n - 1 | ∫ | 
dxsinn - 2 (x)
 |   
 | 
| 28.   | 
| ∫ | 
tgn (x) dx = tgn - 1 (x)n - 1 -  | ∫ | 
tgn - 2 (x) dx
 |   
 | 
| 29.   | 
| ∫ | 
ctgn (x) dx = -ctgn - 1 (x)n - 1 -  | ∫ | 
ctgn - 2 (x) dx
 |   
 | 
| 30.   | 
| ∫ | 
sin (x) cosn (x) dx = -cosn + 1 (x)n + 1 + C
 |   
 | 
| 31.   | 
| ∫ | 
cos (x) sinn (x) dx = sinn + 1 (x)n + 1 + C
 |   
 |