| 1. |
| ∫ |
sin (x) dx = -cos (x) + C |
|
| 2. |
| ∫ |
cos (x) dx = sin (x) + C |
|
| 3. |
| ∫ |
sin2 (x) dx = x2 - 14 sin (2x) + C |
|
| 4. |
| ∫ |
cos2 (x) dx = x2 + 14 sin (2x) + C |
|
| 5. |
| ∫ |
sinn (x) dx = -1n sinn - 1 (x) cos (x) + n - 1n | ∫ |
sinn - 2 (x) dx |
|
| 6. |
| ∫ |
cosn (x) dx = 1n cosn - 1 (x) sin (x) + n - 1n | ∫ |
cosn - 2 (x) dx |
|
| 7. |
| ∫ |
dxsin (x) = ln|tg(x2)| + C
|
|
| 8. |
| ∫ |
dxcos (x) = ln|ctg(x2)| + C
|
|
| 9. |
| ∫ |
dxsin2 (x) = -ctg (x) + C
|
|
| 10. |
| ∫ |
dxcos2 (x) = tg (x) + C
|
|
| 11. |
| ∫ |
sin (x) cos (x) dx = -14cos (2x) + C |
|
| 12. |
| ∫ |
sin2 (x) cos (x) dx = 13sin3 (x) + C |
|
| 13. |
| ∫ |
sin (x) cos2 (x) dx = -13cos3 (x) + C |
|
| 14. |
| ∫ |
sin2 (x) cos2 (x) dx = -18x - 132sin (4x) + C |
|
| 15. |
| ∫ |
tg (x) dx = -ln |cos (x)| + C |
|
| 16. |
| ∫ |
ctg (x) dx = ln |sin (x)| + C |
|
| 17. |
| ∫ |
sin (x)cos2 (x) dx = 1cos (x) + C
|
|
| 18. |
| ∫ |
cos (x)sin2 (x) dx = -1sin (x) + C
|
|
| 19. |
| ∫ |
sin2 (x)cos2 (x) dx = tg (x) - x + C
|
|
| 20. |
| ∫ |
cos2 (x)sin2 (x) dx = -ctg (x) - x + C
|
|
| 21. |
| ∫ |
sin2 (x)cos (x) dx = ln|ctg(x2)| - sin (x) + C
|
|
| 22. |
| ∫ |
cos2 (x)sin (x) dx = ln|tg(x2)| + cos (x) + C
|
|
| 23. |
| ∫ |
dxsin (x) cos (x) = ln|tg(x)| + C
|
|
| 24. |
| ∫ |
dxsin2 (x) cos (x) = -1sin (x) + ln|ctg(x2)| + C
|
|
| 25. |
| ∫ |
dxsin (x) cos2 (x) = 1cos (x) + ln|tg(x2)| + C
|
|
| 26. |
| ∫ |
dxsin2 (x) cos2 (x) = tg(x) - ctg(x) + C
|
|
| 27. |
| ∫ |
dxsinn (x) = -1n - 1cos (x)sinn - 1 (x) + n - 2n - 1 | ∫ |
dxsinn - 2 (x)
|
|
| 28. |
| ∫ |
tgn (x) dx = tgn - 1 (x)n - 1 - | ∫ |
tgn - 2 (x) dx
|
|
| 29. |
| ∫ |
ctgn (x) dx = -ctgn - 1 (x)n - 1 - | ∫ |
ctgn - 2 (x) dx
|
|
| 30. |
| ∫ |
sin (x) cosn (x) dx = -cosn + 1 (x)n + 1 + C
|
|
| 31. |
| ∫ |
cos (x) sinn (x) dx = sinn + 1 (x)n + 1 + C
|
|