Component form of a vector with initial point and terminal point
Formulas determining coordinates of a vector by given coordinates of its initial and terminal points
Vector coordinates formula for plane problems
In the case of the plane problem the vector AB set by the coordinates of the points A(Ax ; Ay) and B(Bx ; By) can be found using the following formula
Vector coordinates formula for spatial problems
In the case of the spatial problem the vector AB set by the coordinates of the points A(Ax ; Ay ; Az) and B(Bx ; By ; Bz) can be found using the following formula
Vector coordinates formula for n dimensional space problems
In the case of the n dimensional space problem the vector AB set by the coordinates of the points A(A1 ; A2 ; ... ; An) and B(B1 ; B2 ; ... ; Bn) can be found using the following formula
Examples of tasks
Examples of plane tasks
Solution: AB = {3 - 1; 1 - 4} = {2; -3}.
Solution:
ABx = Bx - Ax => Bx = ABx + Ax => Bx = 5 + 3 = 8ABy = By - Ay => By = ABy + Ay => By = 1 + (-4) = -3
Answer: B(8; -3).
Solution:
ABx = Bx - Ax => Ax = Bx - ABx => Ax = 3 - 5 = -2ABy = By - Ay => Ay = By - ABy => Ay = -4 - 1 = -5
Answer: A(-2; -5).
Examples of spatial tasks
Solution: AB = {3 - 1; 1 - 4; 1 - 5} = {2; -3; -4}.
Solution:
ABx = Bx - Ax => Bx = ABx + Ax => Bx = 5 + 3 = 8ABy = By - Ay => By = ABy + Ay => By = 1 + (-4) = -3
ABz = Bz - Az => Bz = ABz + Az => Bz = 2 + 3 = 5
Answer: B(8; -3; 5).
Solution:
ABx = Bx - Ax => Ax = Bx - ABx => Ax = 3 - 5 = -2ABy = By - Ay => Ay = By - ABy => Ay = -4 - 1 = -5
ABz = Bz - Az => Az = Bz - ABz => Az = 1 - 4 = -3
Answer: A(-2; -5; -3).
Examples of n dimensional space tasks
Solution: AB = {3 - 1; 0 - 4; 1 - 5; -2 - 5; 5 - (-3)} = {2; -4; -4; -7; 8}.
Solution:
AB1 = B1 - A1 => B1 = AB1 + A1 => B1 = 5 + 3 = 8AB2 = B2 - A2 => B2 = AB2 + A2 => B2 = 1 + (-4) = -3
AB3 = B3 - A3 => B3 = AB3 + A3 => B3 = 2 + 3 = 5
AB4 = B4 - A4 => B4 = AB4 + A4 => B4 = 1 + 2 = 3
Answer: B(8; -3; 5; 3).
Solution:
AB1 = B1 - A1 => A1 = B1 - AB1 => A1 = 3 - 5 = -2AB2 = B2 - A2 => A2 = B2 - AB2 => A2 = -4 - 1 = -5
AB3 = B3 - A3 => A3 = B3 - AB3 => A3 = 1 - 4 = -3
AB4 = B4 - A4 => A4 = B4 - AB4 => A4 = 8 - 5 = 3
Answer: A(-2; -5; -3; 3).
Add the comment